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Scaling functions and scaling exponents in turbulence
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We extend the recent work of Sirovich, Smith, and Yakhot (unpublished) and obtain for structure
functions of arbitrary order an expression that is uniformly valid for the dissipation as well as the inertial
range of scales. We compare the expression with experimental data obtained in a moderate-Reynolds-
number turbulent boundary layer and find good agreement. This enables a more definitive determination
of the scaling exponents and intermittency corrections than has been possible in the past. The results are

substantiated by several consistency checks.

PACS number(s): 05.45.+b, 02.50.—r, 03.40.Gc, 47.27.—i

It is well known that Kolmogorov’s hypotheses of 1941
and 1962 [1,2] lead to the following form for longitudinal
structure functions of velocity fluctuations in high-
Reynolds-number turbulent flows:

&n

S,(r)=([Au,]") <r", n<<r<<L . (1)

Here, Au,=u(x +r)—u(x) is the velocity increment
over a distance r in the direction of the velocity com-
ponent u, 7 is the Kolmogorov length scale representing
dissipative scales of turbulence, and L is the integral
length scale representing the largest correlated motion.
The 1941 prediction that §, =n /3 was modified in 1962,
according to Obukhov [3], to reflect corrections arising
from the intermittent nature of the energy dissipation
rate. Much experimental effort has been expended on the
determination of the scaling exponents §,. (For a semi-
nal paper related to this effort, see Ref. [4]; for the most
recent summary of all previous work, see Ref. [5].) Near-
ly all experiments to date have concluded that £, <n /3
(for n > 3). However, a precise determination of the scal-
ing exponents has been hampered by several operational
problems such as the inadequacy of Taylor’s frozen-flow
hypothesis, the uncertain convergence of high-order
structure functions, and the a priori decision about the
precise scaling region. The issue is not completely
resolved also because of another fundamental difficulty:
in general, unless the scaling region is extensive, the lack
of knowledge of the scaling function precludes an accu-
rate determination of the scaling exponents. By a scaling
function, we mean a function that exhibits not only the
asymptotic scaling behavior but also the trend towards
such a behavior. Ideally, the scaling function should be
derivable from the equations of motion, but this seems to
have proved elusive so far. In a recent paper, Sirovich,
Smith, and Yakhot [6] used matched asymptotic expan-
sions and analyticity assumptions to derive an explicit ex-
pression for the second-order structure function. One of
our goals is to use a similar strategy for obtaining an ex-
pression for structure functions of arbitrary order. A
second goal is to fit this expression to the experimental
data on scaling functions and determine high-order scal-
ing exponents with greater accuracy than has been possi-
ble so far. Several consistency checks will be made.

As mentioned already, Sirovich, Smith, and Yakhot [6]
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studied the case of the second-order structure function.
On using the well-known relation (exactly valid in the
high-Reynolds-number limit for locally homogeneous and
isotropic turbulence [7],

ds,(r)
dr ’
where the dissipation rate e=15v{(du /dx)*) and v is

the kinematic viscosity coefficient, these authors found
that

Siy(r)=—1ter+6v ()

((du /3x)*)r?

S,(r)= Z=5,)77 - 3)

1+ —2—(r /P
(2—85)a
For high Reynolds number 1/a?>=S /12V/60, S being the
skewness of the velocity derivative, given by

_ {((u /3x)?)
((Qu /3x)?)372

To extend this analysis to the high-order structure
function, recall the following results [8].

(a) The nth-order structure function can be easily ex-
panded to order (n +4) as

4)

S, (N=A,r" [1—D, 212 | +o(r"+%), (5)
24
where
du !
=( | C% 6
4, % (6)
and
du | du "
={ —rovn | —— . 7
D, <ax3 Ox >/A,, (7)

(b) The constants D, in Eq. (7) can be expressed as
D,=K,/n*, ®)

where K, is a phenomenological constant (to be deter-
mined) that is approximately independent of n. The con-
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stants K, can be expected to be such that K ., <K 44
because, in Eq. (7), more cancellations occur on the aver-
age for even n than for odd n. Inserting Eq. (8) into Eq.

(5), we have

n 2

n

" 24

Sn = AnTI" —

i, 9)
n

valid for small r /7. For large r /1, we have from Eq. (1)
the expectation that

&n
r

S, «
n

(10)

Matching the two expressions (9) and (10), we arrive at
the result that

S, (r)= Anmr/n)" —— 1)
1+K,lm(r/n)2
For convenience, we rewrite Eq. (11) as
§, ()= — 2 (12)
[1+B,(r/q)?] "

Equation (12) differs from Eq. (11) in that, in the former,
we have not prescribed the precise form for B, or C,.
However, if the reasoning leading to Eq. (11) were
correct, we should find

Kn
B,C, =~ EYRE (13)
with Ky, =K yeq <Kjj 41 =Kgq for jZ 1.

The physical meaning of the parameters 4,, B,, and
C, in Eq. (12) is quite straightforward. Equation (5)
shows that the A4, are the averaged nth power of the lon-
gitudinal velocity derivative. It is therefore a dissipation
quantity. C, is an inertial range quantity, from which
the scaling exponents §, can be easily computed as
¢, =n—2C,. B,=K,/C, is related through K, to the
Taylor expansion of the structure function at values of
r~1, and contains the information about the exponents
¢, through C,. It is therefore a mixture between dissipa-
tive and inertial properties. In fact, the transition from
dissipative to inertial regimes occurs when B, (7 /7)*>>1,
ie, at r/p>1/B}% Tt will be seen later that
1/B}?=11.

We now wish to study the goodness of fit of Eq. (11) or
Eq. (12) with the experimental data on structure func-

tions in both dissipative and inertial ranges. Let us
hasten to note, however, that the function
A’ (r/n)?
j= T (14)
1+(K;/8)r/7)

[with 4;=(K;/10)(e/n*)] cannot rigorously be the
third-order structure function. In effect, if it were,
we would have S, given exactly by Eq. (2) as
S,=[8(n€)?*3 /15K, 1 In[1+ (K, /8)(r /n)*], which is in-
consistent [9] with the anticipated scaling form as well as
with Eq. (3) of Sirovich, Smith, and Yakhot. This natu-
rally invites the following question: why should one be
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interested in an expression for S; which yields an incon-
sistent expression for S,? First, the present S; is numeri-
cally indistinguishable from that obtained from Egs. (2)
and (3). Second, neither the S, given in Eq. (11) nor the
S, of Sirovich, Smith, and Yakhot is exact, but should be
viewed as good approximations to scaling functions. In

contrast to the usual expression S, «r°", which is only
asymptotic and misses all the information about dissipa-
tive scales, Eq. (11) contains not only the asymptotic lim-
it, but also the manner in which it is approached. Thus,
it provides a much better ansatz for the structure func-
tions. This is the spirit in which Eq. (11) must be viewed.

Turbulent velocity data were acquired in a boundary
layer on a smooth flat plate in a wind tunnel. The wind
tunnel had a cross-sectional area of 72X56 cm?, and a
test section length of 170 cm from the leading edge of the
flat plate. The distance between the wind tunnel upper
wall and the top surface of the flat plate (on which the
measurements were made) was 39 cm. The boundary lay-
er was tripped by a combination of sandpaper strips and
a circular rod, and the Reynolds number based on the
boundary layer thickness 8 was 32000. The streamwise
pressure gradient was adjusted to be negligible. The
boundary layer had the expected log-law region with
standard log-law constants. More details on the charac-
terization of the boundary layer can be found in [10]. Ve-
locity measurements were made at a height of 0.26 which
is at the edge of the fully turbulent part of the boundary
layer. The boundary layer was 114 mm thick, and the
flow velocity in the free stream was 12.2 m/s. Velocity
data were acquired with a standard hot wire operating on
a constant-temperature anemometer. The data file was
long (ten million points covering a real-time duration of
about 30 min). It was ascertained [5] that structure func-
tions at least up to the fifteenth order converged. The mi-
croscale Reynolds number was estimated in [5] to be
about 200. Some additional statistical data are listed in
Table I. Even though the flow Reynolds number is not
large enough to determine scaling exponents unambigu-
ously from the use of Eq. (1), Zubair [5] has made a care-
ful and detailed study, and obtained best estimates of the
scaling functions (with which we will be able to make
comparisons). The best spatial and temporal resolution
of the data is of the order of three Kolmogorov scales,
thus missing a significant part of the dissipation region.
In spite of this limitation (which we hope to eliminate in
the near future), it is thought that a comparison with the
theoretical expressions would be beneficial.

Using structure functions computed from these data,
we obtained from least-squares fits the parameters 4,,
B,, and C,. Note that, in contrast to the usual asymptot-

ic scaling fit »°* where both the lower and upper limits of

TABLE 1. Additional parameters characterizing the small-
scale structure of the boundary layer.

Quantity Value

S 0.39

K 5.5
(e/v)!”? 206 sec” !
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FIG. 1. Second (a), seventh (b), and fourteenth (c) -order
structure functions from experimental data. Solid line is the
best fit using Eq. (12). In terms of convergence, the uncertainty
in the data is comparable to the size of the symbols.

the inertial range had to be assessed, we can fit the data
in both dissipative and inertial range—and hence need to
be concerned only about the upper limit. Figures
1(a)-1(c) show as examples the second-, seventh-, and
fourteenth-order structure functions fitted by Eq. (12).
The fits are shown by a solid line. The agreement is good,
and comparable for structure functions of all other or-
ders. Table II lists the various constants obtained by
such fits for n up to 15. The scaling exponents §, listed
in Table II are close to those obtained earlier by Zubair
[5]. Figure 2 shows both sets of exponents: those found
in this paper (diamonds) and those found in [5] (circles).
The error bars are from Zubair [5]. Although the new

TABLE II. The constants 4,, B,, and C,, and the scaling
exponents §,.

n A, [(sec)™™ B, C, &
2 22.06X 107! 7.2X1073 0.65 0.70
3 12.31X 107! 9.8X1073 1.00 1.00
4 28.28 8.5%X1073 1.40 1.20
5 44.07 8.9%x1073 1.74 1.52
6 73.46 X 10! 8.3x1073 2.19 1.62
7 21.10X 10? 8.7X1073 2.52 1.96
8 28.55X10° 7.8X1073 3.00 2.00
9 13.09 X 10* 8.5X1073 3.32 2.36
10 17.39X 10° 7.8X1073 3.82 2.36
11 95.64 X 10° 8.2X1073 4.15 2.70
12 12.51% 107 7.5%1073 4.66 2.68
13 77.04 X 107 8.1x1073 4.96 3.08
14 10.17 X 10° 7.3X1073 5.49 3.02
15 66.79 X 10° 7.8X1073 5.76 3.48
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FIG. 2. Plot of the scaling exponents §, versus n computed
using the scaling functions (diamonds) and the classical power-
law fits (circles) [5]. The dashed line is the n /3 prediction of
Kolmogorov’s 1941 theory.

scaling exponents fall well within the error bars given by
[5], it is clear that the circles tend to be above the dia-
monds for large n. We suspect that this is because the
lower bound of the scaling range for high-order structure
functions in [5] was underestimated. (The upper bound
of the scaling region was the same in both cases.) The
present data fully support the conclusions of Zubair [5]
that §, <n/3 for n >3, and that the odd exponents are
organized on a curve that is distinct and higher than that
for even n.

As already remarked, consistency between Egs. (11)
and (12) requires that B, C, =(K, /24)n. Figure 3 shows
a plot of 24B, C, /n as a function of n. We can see that,
except for n =2 and possibly n =3, the K, are constant
and independent of n, different for odd and even
n: K..,=0.071 (dotted line) <K ,44=0.074 (dashed
line). This difference is small but significant, as explained
in the caption to the figure.

At this point several tests of consistency can be made
First, consider the skewness of the velocity derivative.
From Egs. (4) and (5) and Table II, we have

S= =0.38, (15)

A 3/2

which is in good agreement with the measured value
given in Table I. Alternatively, as mentioned earlier, the
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FIG. 3. Plot of K, =24B, C, /n versus n for even (plus) and
odd values of n (circles). For both even and odd values of n sep-
arately, the standard deviations 0., and 0.4 are each 0.001.
The mean and standard deviations for all n taken together are
0.0726 and 0.002, respectively. The statement that K., < Kqq
is statistically significant because K cyen + O even < Kodd — O odd-
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skewness can also be computed through
S=vV60K,=(V'60)12B,C,=0.43 . (16)

This is again in reasonable agreement with measure-
ments.

Second, consider the kurtosis of the velocity derivative
K =((du /3x)*) /{(3u /3x)*)*. From Egs. (4), (5), and
Table II, we find that K= A4,/ A43=5.8, in good agree-
ment with direct measurements (see Table I).

Third, from the theory of locally isotropic turbulence
[1,11], we know that {(du /dx)*)=e€/15v and that for
r/m>>1,8;/(r/n)= —+%en. It follows that

172
(154,)12= | & | | (17)
1/3 172
54| |e (18)
4 B3 v
From Table II we find (in units of sec™!)
(154,)'?=213, (19)
1/3
A
%3_3 =200 . (20)
3

There is a relative difference of less than 7% between
the two estimates for (e/v)!/2, again in excellent agree-
ment with measurements (see Table I).

Finally, it is interesting to note that the asymptotic
limit » /1 >>1 of the second-order structure function

A27l2
s
(2—E)12V15

S2=

J(z—gz)/z (r /) 21

(where we have used K, =S8 /v 60) can be expressed in
the more familiar form as

S,=C,(Le)3(r/L)* . (22)
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This allows us to write the skewness S in terms of the
constant C, and the microscale Reynolds number Re; as

443 (3/2)0&,—2/3)/(2—¢&,)
S:
15
12V15(2—&,) - _
x 2/<2_§§2)Rei(§2 23/0-6) 23)
(15C,) 2
where A is a constant of order unity defined by

A=¢€L /u’. Equation (22) shows that S varies as the
3(§,—2/3)/2—¢&, power of Re,. Under a completely
different approach [12] in the context of generating tur-
bulencelike signals, the same result was found analytical-
ly. In Kolmogorov’s 1941 theory [1] in which {,=2%, one
finds that C,=(16/155)*/3.. This relation emphasizes the
well-known fact [11] that the inertial range constant C,
(universal in the context of [1]) is related to the nominally
dissipative quantity S, which makes the latter quantity
special. Using the experimental value for S from Table I,
we obtain C,=1.96, which falls within the accepted
range [11] of 1.8-2.2. If intermittency is taken into ac-
count in the form of {,=0.71[13] and A4 is taken to be
unity [14], one has from Eq. (23) the result that

S=0.27Rey ! . (24)

Equation (24) is in reasonable agreement with experimen-
tal data (see, for example, [15]).

In conclusion, this work emphasizes that expressions
for structure functions uniformly valid over the dissipa-
tive and inertial ranges can be found. They contain only
a few parameters with easily identifiable interpretation,
and capture a great deal of quantitative information. Fi-
nally, it shows that the deviations of the scaling ex-
ponents from the classical values n /3 are not an artifact
of the small size of the scaling region.

We thank Larry Sirovich, Victor Yakhot, and Leslie
Smith for sharing their work prior to its publication and
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